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\Résumé 1 

 2 

 Les menaces résultantes des activités humaines sur les milieux forestiers vont toujours 3 

croissantes, et cela en dépit de la valeur inestimable de ces écosystèmes en terme de services 4 

socio-économiques et de diversité biologique. A l’heure actuelle, la compréhension des 5 

mécanismes à travers lesquels l’urbanisation et l’exploitation forestière affectent la 6 

biodiversité forestière apparaît donc comme un enjeu crucial pour concevoir des plans de 7 

gestion. Dans ce contexte, l’étude des populations d’amphibiens, du fait de la grande 8 

sensibilité de ces espèces face aux changements intervenant dans leur milieu de vie, peut 9 

s’avérer être un outil précieux pour mieux cerner les relations existantes entre espèces et 10 

environnement. C’est pourquoi nous avons investigué les effets de 16 variables 11 

environnementales, allant des caractéristiques des plans d’eau jusqu’aux facteurs paysagers en 12 

passant par des paramètres propres à la gestion forestière, sur l’abondance et la richesse 13 

spécifique d'une communauté de batraciens. La présente étude a été réalisée sur 46 sites de 14 

reproduction à amphibiens localisés dans une forêt périurbaine du Plateau Suisse, chacun 15 

d’entre eux ayant été visités à trois reprises au cours de la saison de reproduction. En premier 16 

lieu, nous avons utilisé la technique des modèles de distribution d’espèces en réalisant une 17 

analyse classique de type GLMs afin d’identifier les principaux paramètres affectant la 18 

distribution spatiale des amphibiens. Dans un second temps, nous avons appliqué aux espèces 19 

menacées et qui sont par ailleurs souvent caractérisées par une faible probabilité de détection 20 

une analyse qui, basée sur le principe sélection de modèles, nous a permis de tenir compte du 21 

risque de fausses-absences. L’analyse au moyen des GLMs a révélé que les populations 22 

d’amphibiens étudiées étaient principalement influencées par la taille des sites de 23 

reproduction ainsi que la présence d’une arrivée d’eau d’une part, et par la connectivité, 24 

l’altitude, la proportion d’aire forestière et l’âge du peuplement d’autre part. Ces points ont 25 

été corroborés par l’analyse prenant en compte la détectabilité qui a en outre permis de les 26 

affiner en identifiant certains prédicteurs additionnels influençant plus spécifiquement la 27 

distribution des espèces auxquelles cette analyse à été appliquée. Ce résultat met donc en 28 

évidence la contribution complémentaire des analyses de détectabilité par rapport aux 29 

méthodes classiques de distribution d’espèces. Cela constitue une information de grande 30 

valeur dans le contexte actuel de déclin de la biodiversité et nous ne pouvons donc 31 

qu’encourager l’utilisation de cette méthode afin de cibler plus efficacement les mesures de 32 

conservation en faveur des espèces cryptiques ou menacées. Finalement, nous avons 33 

démontré que les principaux paramètres affectant la distribution des amphibiens proviennent 34 
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pour certains des caractéristiques propres aux plans d’eau, pour d’autres de celles propres à la 35 

gestion sylvicole et pour d’autres enfin de celles propres au paysage. Cela souligne donc 36 

l’importance de considérer ces trois différentes échelles dans le cadre des plans de gestion 37 

forestiers. En conséquence, nous encourageons donc les gestionnaires forestiers premièrement 38 

à protéger et restaurer les sites de reproduction à batraciens présentant une surface suffisante, 39 

une alimentation en eau courante ainsi qu’une bonne interconnectivité, et deuxièmement à 40 

favoriser les peuplements forestiers montrant une succession naturelle. En effet, nous avons 41 

pu démontrer au cours de cette étude que la prise en compte de ces paramètres devrait 42 

grandement bénéficier aux communautés d’amphibiens. 43 

 44 

\Mots-clés 45 

 46 

Habitats terrestres, sites de reproduction à amphibiens, modèles de distribution d’espèces, 47 

modèles d’occupation de sites, Lissotriton helveticus, Salamandra salamandra. 48 

 49 
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\Abstract 67 

 68 

 Forested areas are increasingly threatened by human activities despite their 69 

inestimable value in terms of socio-economic functions and above all biological diversity. 70 

Understanding how urbanisation and forestry practices affect biodiversity spatial patterns in 71 

forest ecosystem is therefore crucial to devise valuable conservation plans. In this context, 72 

amphibians provide a useful tool to study species-environment relationships, as a result of 73 

their high sensitivity to environmental changes. Therefore, we investigated the effect of 16 74 

environmental variables ranging from within-pond characteristics to landscape scale factors as 75 

well as forest management parameters on the abundance and species richness of pond 76 

breeding amphibians. Monitoring survey, which included three visits per site during one 77 

breeding season, was realised on 46 ponds located in a suburban forested landscape of Central 78 

Plateau in Western Switzerland. First, we used classical GLM techniques (i.e. species 79 

distribution modelling) in order to identify the main drivers of amphibian distribution. And 80 

subsequently, we realised a model selection based analysis accounting for risk of false-81 

absence (i.e. site-occupancy modelling) for threatened species which moreover are often 82 

characterised by a low detectability. Species distribution models reveal that amphibian 83 

populations were mostly influenced by the pond size and the presence of a water supply, 84 

along with connectivity, elevation, forest cover and stand age. These results are corroborated 85 

by the site-occupancy analysis which highlights in a more species-specific way some 86 

additional environmental predictors. Hence, our findings underscore the complementary 87 

contribution provided by site-occupancy modelling to classical species distribution models in 88 

the case of rare species. This information if of great concern in the current context of 89 

biodiversity crisis and we thus strongly encourage the use of site-occupancy models in order 90 

to powerfully target conservation measures for cryptic and endangered species. In conclusion, 91 

we provide evidence that different environmental variables acting at all pond, landscape and 92 

forest management levels affect amphibian distribution, which emphasize the importance of 93 

considering all those different aspects in forest management programs. Finally, we encourage 94 

forest managers first to protect and restore well connected ponds presenting sufficient surface 95 

areas as well as running water supplies, and second to favor uneven-aged stands with natural 96 

dynamic as we demonstrated that considering these parameters will greatly benefit to 97 

amphibian communities. 98 

 99 

 100 
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\Introduction 105 

 106 

 Forested areas currently cover about 27% of land surface around the Earth (Larsson, 107 

2011) and are of crucial importance for biodiversity in hosting more than 80% of world 108 

terrestrial species (Achard et al., 2009). Furthermore, forests perform a wide range of socio-109 

economic and ecosystem functions: they provide natural resource products, play a protective 110 

role against destructive natural events, serve for population recreational purposes and above 111 

all are essential to biogeochemical cycles achievement, climate regulation and atmosphere 112 

quality control (Führer, 2000). In Europe, despite this state of knowledge, threats to forest 113 

biodiversity are continuously increasing, largely due to human activity (Bengtsson et al., 114 

2000). Indeed, urbanisation (Hamer and McDonnell, 2008) and forestry practices (Hansen et 115 

al., 1991) have been identified as key threatening processes for this rich ecosystem, mainly 116 

through the disturbances, the loss of suitable habitats and the landscape fragmentation they 117 

provoke (Herrmann et al., 2005). Hence, because strictly protected forests won’t be sufficient 118 

to conserve biological richness (Demaynadier and Hunter, 1995), the most relevant challenge 119 

at the moment consist in finding a right balance between human induced pressure on forested 120 

areas and forest biodiversity preservation (McNeely, 1994). 121 

 In this respect, forest amphibians constitute a privileged taxon to obtain a better 122 

understanding of the mechanisms through which human activity negatively impact forest 123 

ecosystems. Indeed, amphibians are highly sensitive to most environmental changes occurring 124 

in their natural habitats, essentially as a result of their limited dispersal ability, their reduced 125 

home range, their dependence to both aquatic and terrestrial habitats and their high 126 

vulnerability to road traffic, pathogens, invasive species, pollutions and climate changes 127 

(Cushman, 2006). Moreover, in forest as well as wetland ecosystems amphibian populations 128 

frequently represent a considerable proportion of vertebrate biomass and are in addition a key 129 

component of food webs in being important prey and predator species (Demaynadier and 130 

Hunter, 1995; Hamer and McDonnell, 2008). These considerations make amphibian species 131 

valuable bioindicators in forested landscape (Semlitsch et al., 2009) and highlight the benefit 132 

derived by a large guild of species from attention paid to this taxon. 133 

 Thus, and even if amphibians have received less interest in the past than some other 134 

groups such as birds or mammals (Russell et al., 2004), numerous studies already investigated 135 

the main drivers of forest amphibian distribution patterns (for a review: Demaynadier and 136 

Hunter, 1995). To date, these researches investigated the influence of environmental variables 137 

on forest amphibian populations mainly in relation to three different axes: pond scale, forest 138 
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management scale and landscape scale. At the pond level, factors known to affect amphibian 139 

species richness and abundance include: (1) the canopy closure, which can induce pond 140 

hypoxia both in increasing leaf litter decomposition (McCormick and Laing, 2003) and in 141 

reducing in situ photosynthesis through limitation of incoming light (Colburn, 2004), (2) the 142 

aquatic vegetation, which provides oviposition sites, shelters for larvae and adults and 143 

contributes to tadpole diet (Hamer and McDonnell, 2008; Smallbone et al., 2011), and (3) the 144 

pond morphology, which is related to microhabitat diversity and invertebrate-prey availability 145 

(Hamer and McDonnell, 2008; Smallbone et al., 2011). At forest management scale, 146 

important variables for amphibian distribution comprise: (1) the amount of coarse woody 147 

debris, which favour a high humidity level (Moseley et al., 2004) and provide overwintering 148 

refuges as well as feeding substrates (Demaynadier and Hunter, 1998; Waldick et al., 1999; 149 

Owens et al., 2008), (2) the coniferous rate, which affects soil microclimate (Bury, 1983) and 150 

acidity (Augusto et al., 2002) along with leaf litter quality (Waldick et al., 1999) and coarse 151 

woody debris quantity (Fleming and Freedman, 1998), (3) the stand age, which is related to 152 

quality and quantity of microhabitat elements such as canopy cover, soil moisture and litter 153 

type and depth (Spies and Cline, 1988; Hansen et al., 1991; Demaynadier and Hunter, 1995), 154 

and (4) the exploitation intensity, which decreases soil arthropods diversity and abundance as 155 

well as microhabitat and coarse woody debris availability. Finally, at landscape scale, 156 

parameters shown to impact amphibian populations include: (1) the pond connectivity, which 157 

is expected to be of crucial importance for species such as amphibians whose dynamic 158 

resembles metapopulation models (Marsh and Trenham, 2001), (2) the stream density, which 159 

participates to pond connectivity and is in addition associated with soil humidity (Wyman, 160 

1988), and (3) the forest cover, which enhances pond connectivity and favours moisture as 161 

well as shade at ground level (Cushman, 2006). 162 

 But despite this abundant literature, there is lack of studies investigating the 163 

conjugated effects of within-pond variables, forest management parameters and landscape 164 

factors at the same time (but see Hamer and McDonnell, 2008; Lemckert and Mahony, 2010; 165 

Hamer and Parris, 2011). Therefore, with the present survey we aim at improving our 166 

understanding of issues related to amphibian conservation in forested landscape. We thus 167 

investigated how 16 different environmental variables resulting from either pond, forest 168 

management, or landscape scales affect both species richness and abundance of forest 169 

amphibians. Additionally, we integrated a detectability aspect into our analysis as it was 170 

demonstrated by several studies (Moilanen, 2002; Gu and Swihart, 2004; Mazerolle et al., 171 

2005) that not accounting for probability of detection can lead to erroneous conclusions 172 
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concerning relationships linking species distribution to environmental factors. Consequently, 173 

in studying amphibian species-environment relationships in forested landscape, we intend to 174 

better target conservation measures favourable to amphibian communities, and to provide 175 

clear guidance to forest managers and stakeholders. 176 

 177 

\Methods 178 

 179 

Study area 180 

 The study area is located in the Western Switzerland on the Central Plateau to the 181 

North of Lausanne (46.58°N/6.68°E), an area with moraine soil and semi-continental climate 182 

(Bouët, 1985; Steinlin et al., 1993). It covers about 20 km2 separated into three patches of 183 

dense mixed forest with elevation ranging from 570 to 930 m.a.s.l. (Figure 1). This forested 184 

area is mainly composed of two different landscape types: Galio-Fagenion at the lowest 185 

elevations and Lonicero-Fagenion at higher altitudes (for phytosociological cartography of 186 

the study area: Clot et al. 1994, for landscape typology: Delarze and Gonseth 2008). Human 187 

influence has been for long important in the whole part of the study area through forestry due 188 

to high wood needs for heating, construction, transport and industry. The 19th century as well 189 

as the first part of the 20th century were particularly marked by the conversion of natural 190 

forests into conifer plantations (principally Picea abies) as well as clear-cutting resulting in 191 

the formation of even-aged stands dominated by a very low number of different tree species. 192 

In addition, swamps and marshy grasslands were drained and devoted to afforestation 193 

(Steinlin et al., 1993). However, since 1950, forest management is oriented in a more 194 

ecological way, favouring natural regeneration, thus leading progressively to the 195 

establishment of uneven-aged and varied stands. In the late eighties, Forest services have 196 

likewise launched a program of conservation and restoration of forest wetlands which 197 

represent to date about 5% of forested landscape in the study area (Induni-Gaffiot and Moret, 198 

2000). 199 

 200 

Amphibian survey 201 

 Except two ponds with surface superior to 5000 m2 and which were stocked with fish, 202 

all amphibian breeding ponds of the study area known by the Forest Services were surveyed 203 

(n=46). Each of them was visited three times between the 14th March and the 15th June 2011. 204 

Visits occurred during the first part of the night and consisted in call and light survey looking 205 

for adults, larvae and clutches. Moreover, the first and third visits included the overnight 206 
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utilization of 6 funnel traps per site. For each site, we thus computed its species richness (i.e. 207 

the total number of different species observed during the survey) and its total abundance in 208 

amphibians (i.e. the sum of the maximal number of adults, and eventually larvae – only for 209 

Caudata – or clutches – only for Anura, observed for each species). We excluded from the 210 

analysis T. carnifex and P. ridibundus which are invasive species in the study area. 211 

 212 

Environmental predictors 213 

 We selected a set of 16 different environmental variables classified into 3 categories 214 

(Table 1) related to amphibian ecology in order to investigate amphibian species richness and 215 

abundance patterns in the study area: 216 

• Amphibian aquatic habitat has to fulfil different ecological characteristics with regard for 217 

example to water quality (Sacerdote and King, 2009), feeding resources availability (Babbitt 218 

et al., 2003) or microhabitats diversity (Hamer and McDonnell, 2008; Smallbone et al., 219 

2011). And such decisive qualities are tightly linked to pond properties. Therefore, we 220 

considered the four following variables associated with pond characteristics: (1) the pond 221 

surface area (abbreviated Size), (2) the percentage of emergent aquatic vegetation cover 222 

(Aqua-Veg), (3) the canopy density above the pond (Canopy) and (4) the existence of a 223 

running water supply (Water), each of them estimated on the field.  224 

• Relative to terrestrial habitat, amphibian distribution is also constrained by different 225 

criteria such as soil humidity and temperature (Wyman, 1988; Waldick et al., 1999), leaf 226 

litter quality (Demaynadier and Hunter, 1998), soil invertebrate abundance (Vonesh, 2001) 227 

and availability of shelters and overwintering refuges (Mitchell et al., 1997). Landscape type 228 

and forest management both influence these criteria. Hence, we measured four variables 229 

peculiar to landscape properties: (1) the proportion of forested area (Forest), (2) the stream 230 

density (Hydro), (3) the pond elevation (Elev) and (4) the pond connectivity (Connect). All 231 

of them were obtained aid of ArcGIS v9.3 (Esri, 2008). In particular, we simplified the 232 

distance-weighted area of occupied habitat (incidence function model) presented by Prugh 233 

(2009) in order to calculate pond connectivity, which resulted in the following formula 234 

 235 

where Si is the connectivity measure for patch i, dij is the distance between focal patch i and 236 

patch j, and α equals 1/the average migration distance of the species. In this calculation, we 237 

set the average migration distance to 1 km given that Smith and Green (2005) and Kovar et 238 
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al. (2009) demonstrated that amphibians, especially juvenile specimens, are often capable of 239 

migrating for hundred meters or even several kilometres.  240 

• And we finally considered the following aspects of forest management: (1) the 241 

coniferous rate (Conifer-A and Conifer-B), (2) the exploitation intensity (Exploit), (3) the 242 

stand age (Age, Diam and Sd-Diam), (4) the amount of coarse woody debris (CWD) and (5) 243 

the herbaceous vegetation cover (Veg). Coniferous rate represents the proportion of 244 

coniferous stems against the total number of stems, and was measured within a small 245 

(Conifer-A) and a large (Conifer-B) radius in order to investigate the effect of conifer on 246 

both aquatic and terrestrial habitats. Exploitation intensity corresponds to the proportion of 247 

forested landscape that wasn't logged or harvested during the past decade. Stand age was 248 

measured in three different ways. Firstly, we described if the zone close to the pond was 249 

already a forested area before the 20th century or if natural reforestation occurred during the 250 

last century (Age). Secondly, stand age was indirectly measured through the mean diameter 251 

at breast height of the forest stand (Diam). And thirdly, we account for the heterogeneity of 252 

forest seral stage in calculating the standard deviation of this mean diameter (Sd-Diam). 253 

Those variables regarding coniferous rate and stand age were obtained aid of ArcGIS. 254 

Finally, we estimated visually the herbaceous (height < 50 cm) vegetation cover (Veg), and 255 

we measured the volume of large dead wood (length > 130 cm and diameter > 12 cm) at 256 

ground level (CWD) in accordance with Kaufmann (2001), both of these variables were 257 

collected on the field. The amount of coarse woody debris at ground level as well as the 258 

pond surface area were transformed using natural logarithm function in order to achieve 259 

normality. 260 

 Previous studies (Cushman, 2006; Kovar et al., 2009) demonstrated that after they 261 

reach sexual maturity, migration of amphibians with biphasic lifecycle are restricted to a 262 

small area surrounding their breeding pond to which they show considerable fidelity. 263 

Therefore, whenever it was possible, we measured landscape and forest management 264 

predictors within a 500 m radius around the pond (Forest, Hydro, Exploit, Diam, Sd-Diam 265 

and Conif-B). But field data collecting constrained us to reduce this buffer to a 100 m radius 266 

for several predictors (Age, CWD, Veg and Conif-A, see Table 1). 267 

 268 

Modelling approaches 269 

 First of all, we examined possible correlations between variables to ensure their 270 

independency. We then employed classical macroecological approaches as referred in Dubuis 271 

et al. (2011) using GLM modelling techniques (McCullagh and Nelder, 1989) in order to test 272 
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the link between each of our environmental variables and the amphibian distribution. We used 273 

Gaussian distribution in the case of species richness and quasi-Poisson distribution for the 274 

total abundance in amphibians. According to the method developed by Johnson and Omland, 275 

(2004) we conducted minimum AIC procedure aiming at the selection of most parsimonious 276 

model. We then evaluated the reliability of these GLMs by calculating their adjusted deviance 277 

(i.e. the explanatory power of the model, referred as R2 thereafter). Results of this analysis 278 

were then used to project the expected amphibian abundance on the whole study area 279 

following Guisan and Zimmermann (2000). 280 

 In most monitoring surveys, species detection is imperfect, thus leading to an 281 

underestimation of the true distribution of the focal species (Yoccoz et al., 2001) and 282 

consequently to erroneous interpretation of species-environment relationships (Gómez-283 

Rodríguez et al., 2011). Subsequently, we derived detection histories from our repeated visits 284 

and ran species-specific analysis aid of the free software program PRESENCE v3.1 (Hines, 285 

2006) with the intention of accounting for detection probabilities and true site-occupancy 286 

rates (MacKenzie et al., 2002, 2003). Based on the latter and according to Pellet and Schmidt 287 

(2005), we calculated the probability of not detecting a species after the three visits per site 288 

we carried out. For species with this estimator being different from zero, we realised a model 289 

selection based analysis accounting for potential false-absence. For this, we used the single-290 

season analysis option implemented in program PRESENCE, introducing the 16 previously 291 

mentioned environmental predictors as site-occupancy covariables and assuming a constant 292 

detection probability over sites and sampling occasions. We then defined 11 models we 293 

believed might explain species site-occupancy, each of them combining a different set of 294 

covariables (Table 2). Finally, we used the parametric bootstrap procedure described by 295 

Mackenzie and Bailey (2004) for assessing the fit of these site-occupancy models (bootstrap 296 

value was set to 3000). 297 

 298 

\Results 299 

 300 

Amphibian survey 301 

 Excluding observations of invasive species (Triturus carnifex and Pelophylax 302 

ridibundus), we detected during our field survey on 46 breeding ponds the presence of more 303 

than 12’000 amphibian individuals belonging to six different species: Bufo bufo, Rana 304 

temporaria, Pelophylax lessonae, Mesotriton alpestris, Lissotriton helveticus, and 305 

Salamandra salamandra. Three of them (B. bufo, L. helveticus and S. salamandra) are 306 
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included in the Swiss Red List of endangered species with vulnerable (VU) conservation 307 

status (Schmidt and Zumbach, 2005). Amphibian species distribution varied between one and 308 

five for species richness (mean = 3.28 ± 0.88) and between five and 1016 for total abundance 309 

(mean = 279.85 ± 258.9). Site-occupancy and abundance were high for B. bufo (site-310 

occupancy rate: 83%, total occurrences proportion: 27%), R. temporaria (100%, 56%) and M. 311 

alpestris (96%, 16%), whereas L. helveticus (17%, <1%), S. salamandra (26%, <1%) and P. 312 

lessonae (7%, <1%) were much rare. 313 

 314 

Generalized linear model analysis and community projection 315 

 The analysis of the data using GLM techniques showed that several pond, landscape 316 

and forest management variables affect amphibian distribution at the same time (Table 3). 317 

The best model obtained relative to species richness (R2 = 0.49) emphasises significant effects 318 

(significance threshold: P < 0.05) of the pond surface area, the presence of a running water 319 

supply, the presence of a recent forest stand close to the pond(positive correlations) and the 320 

pond elevation (negative correlation). In a similar way, the best model in relation to 321 

amphibian total abundance (R2 = 0.73) identifies the pond size, the connectivity, the stand age 322 

heterogeneity and forest cover as having a positive significant influence. Moreover, even if 323 

not presenting significant effect, the following variables were kept in these final models: the 324 

aquatic vegetation cover, the canopy closure and the stand age heterogeneity in the species 325 

richness model, and the aquatic vegetation cover, the streams density, the coniferous rate 326 

around the pond, the exploitation intensity, the volume of large dead wood at ground level 327 

and the pond elevation in the total abundance model. 328 

 Landscape and forest management predictors highlighted by the previous GLM 329 

procedure were then used to build a projection for the whole study area of the expected total 330 

abundance in amphibians on breeding ponds (Figure 1). By locating the most suitable areas 331 

for new ponds creation in the centre of the forested landscape and at locations characterized 332 

by a high proximity with existing breeding ponds, this projection emphasizes the importance 333 

of connectivity and forest cover for the determination of amphibian total abundance. Given 334 

the dominance of pond variables compared with landscape and forest management variables 335 

shown to influence species richness, repeating this projection for the latter wasn’t relevant. 336 

 337 

Site-occupancy statistics and model selection analysis 338 

 Given the very low number of occurrences observed for P. lessonae (n = 3), we 339 

excluded this species from this part of the analysis. Concerning the five remaining species, we 340 
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found that the three of them belonging to the Swiss Red List of endangered species, namely B. 341 

bufo, S. salamandra and L. helveticus, present a considerable risk of false absence after the 342 

three visits per site we carried out (respectively 0.04, 0.14 and 0.16), whereas this estimator is 343 

equal to zero in the case of R. temporaria and M. alpestris (Figure 2). Therefore, we 344 

submitted only the three Red List species to the model selection based analysis accounting for 345 

potential false-absence. This analysis reveals that models related to pond management and to 346 

metapopulation survival in the case of L. helveticus, and those related to larvae survival and to 347 

pond management in the case of S. salamandra perform best than the others (Table 4). 348 

Indeed, the cumulative sum of Akaike weights of each of these pairs of “best models” is 349 

greater than 0.7. In addition, each of them comes before the full model in the AIC ranking. 350 

Furthermore, this ranking is supported by the high p-value (0.48 and 0.5 in the case of L. 351 

helveticus, and 0.69 and 0.59 in the case of S. salamandra) obtained by the top models via the 352 

bootstrap procedure, which indicates that they predict in a consistent way with what was 353 

observed on the field. Consequently, these results suggest that environmental covariables that 354 

are shared in common by these two pairs of “best models”, which means the pond 355 

connectivity and the streams density in the case of L. helveticus, and the pond surface area, 356 

the aquatic vegetation cover and the presence of a running water supply in the case of S. 357 

salamandra, are of crucial importance for the focal species. Concerning B. bufo, the null 358 

model performs best than all the others, thus indicating that this analysis didn’t provide any 359 

trustworthy results for this species (we therefore chose not to show the resulting table). 360 

 361 

\Discussion 362 

 363 

 Understanding ecological requirements of biphasic lifecycle amphibians is hard due to 364 

their dependence to both aquatic and terrestrial habitats. Consequently, research efforts 365 

concerning amphibian distribution generally focused on one aspect of amphibian ecology 366 

(Trenham and Shaffer, 2005). Relatively to forest amphibian species, numerous studies thus 367 

investigated either the effect of forest management (Hansen et al., 1991; Demaynadier and 368 

Hunter, 1995), or the effect of pond characteristics (Egan and Paton, 2004) or else the 369 

influence of landscape parameters (Herrmann et al., 2005; Werner et al., 2007). Whereas 370 

canopy closure, aquatic vegetational cover and pond morphology have been identified as the 371 

main factors influencing amphibian species richness and abundance at pond scale (Burne and 372 

Griffin, 2005; Skidds et al., 2007), pond connectivity, stream density and forest cover 373 

appeared to be the key predictors at landscape scale (Cushman, 2006; Ficetola et al., 2009; 374 
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Ribeiro et al., 2011). Finally, studies investigating effects of forest management parameters 375 

highlighted the importance of dead wood, coniferous rate and stand age for forest amphibian 376 

distribution (Petranka, 1994; Bull, 2002; Loehle et al., 2005). But very few studies try to 377 

investigate those different axes simultaneously (Hamer and McDonnell, 2008; Lemckert and 378 

Mahony, 2010; Hamer and Parris, 2011). Here by examining the influence of 16 379 

environmental variables, we show that pond, landscape and forest management characteristics 380 

affect amphibian species richness and abundance at the same time. 381 

 At pond scale and according to numerous previous studies (Waldick et al., 1999; 382 

Burne and Griffin, 2005; Skidds et al., 2007), we found that pond size positively affect both 383 

amphibian species richness and abundance. This finding may result from an increase in 384 

aquatic microhabitat diversity and above all in feeding resources availability with pond size. 385 

One can nevertheless expects that this relation follows a curvilinear relationship, as bigger 386 

ponds are more likely to contain predatory fish (Hecnar, 1997; Hecnar and M’Closkey, 1998). 387 

Our predictor range was probably insufficient to detect such a pattern. A second valuable 388 

result with conservation implications concerns the significant increase in species richness 389 

observed in the presence of a running water supply. This can be explained by the fact that 390 

individuals of S. salamandra, and to a lesser extent L. helveticus, were almost exclusively 391 

monitored in ponds presenting a permanent water supply. This observation fits perfectly the 392 

ecological requirements of those species which are known to be mainly restricted to cool and 393 

oligotrophic water (Günther, 1996; Meyer et al., 2009). 394 

 In managed forest, many studies revealed a clear effect of stand age on amphibian 395 

species, older forests being richer than young ones (Raphael, 1988; Welsh, 1990; Petranka, 396 

1994; Petranka et al., 1994; Dupuis et al., 1995; Russell et al., 2002). But in many cases, this 397 

outcome simply reflect the obvious detrimental effect of clear-cutting on amphibian 398 

populations (Demaynadier and Hunter, 1995), young forests being often mingle with recently 399 

clearcut stands (Loehle et al., 2005). In our study area, clear-cutting practice was abandoned 400 

for a few decades which certainly explains the positive relation we observed between forest 401 

seral stage heterogeneity and amphibian abundance. Indeed, stand age heterogeneity is related 402 

to forest structural complexity and diversity (Hansen et al., 1991) which in turn underlies 403 

important habitat factors for amphibians such as the amount of coarse woody debris, the litter 404 

quality and the soil moisture (Spies and Cline, 1988; Demaynadier and Hunter, 1995). The 405 

positive effect of recent (20th century) forest stands on amphibian species richness should be 406 

interpreted in the same way, those areas promoting the establishment of an uneven-aged 407 
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stand. At forest management level, our study thus emphasizes the importance of maintaining a 408 

seral succession that gets as close as possible to natural forest dynamic. 409 

 At the landscape scale, we obtained a decline of amphibian species richness along 410 

increasing elevation gradient, which is consistent with the general findings of Rahbek (1995). 411 

Actually in our survey, this pattern mainly results from the almost complete absence of L. 412 

helveticus and especially S. salamandra above 800 m.a.s.l., both these species preferentially 413 

occurring at around 400 to 500 m.a.s.l. in Western Europe (Günther, 1996; Meyer et al., 414 

2009). According to numerous studies reviewed by Cushman (2006), we observed a positive 415 

relationship between amphibian abundance and the proportion of forested areas in the 416 

surroundings. Forested zones are known to be of crucial importance for pond breeding 417 

amphibians in providing shade, favouring moisture at ground level and contributing to the 418 

availability of diversified habitats (Corn and Bury, 1989; Waldick, 1997; Naughton et al., 419 

2000; Herrmann et al., 2005). Furthermore, this result has to be related to the observed 420 

positive effect of pond connectivity on amphibian abundance, which in addition supports the 421 

previous studies by Ribeiro et al. (2011), Hamer and McDonnell (2008) and Sjogren (1991). 422 

Indeed, taken together these observations make a strong case for the assumption that pond 423 

breeding amphibian dynamic often resemble metapopulation models (Marsh and Trenham, 424 

2001) and thus underscore the vulnerability of local amphibian populations to habitat loss and 425 

fragmentation (Cushman, 2006). 426 

 Despite the abundant literature highlighting and describing the mechanisms through 427 

which the amount of coarse woody debris positively impacts amphibian populations (Harmon 428 

et al., 1986; Hansen et al., 1991; Demaynadier and Hunter, 1995; Whiles and Grubaugh, 429 

1996), we found no evidence of such a relationship in our survey. This failure can probably be 430 

attributed to the insufficiently proximal way we measured the amount of dead wood at ground 431 

level. Actually, our measurements didn’t considered neither the spatial distribution of coarse 432 

woody debris (e.g. rather in piles or rather scattered), nor its decomposition stage although 433 

these parameters were shown to influence the dead wood quality for amphibians species 434 

(decomposition stage: Waldick et al., 1999; spatial distribution: Indermaur and Schmidt, 435 

2011). Interestingly and contrary to the findings of numerous studies (Demaynadier and 436 

Hunter, 1995; Waldick et al., 1999; Loehle et al., 2005), coniferous rate didn’t appeared as a 437 

main driver of amphibian populations. But this can be related to the fact that the vast majority 438 

of the study area is located above 700 m.a.s.l. and is thus naturally dominated for a long time 439 

by mixed forests (Steinlin et al., 1993). 440 
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 A recurrent problem with species distribution models relying on correlation analysis 441 

between environmental factors and species richness or abundance of a taxon arises when there 442 

are significant differences in species detection frequencies, the majority of them being very 443 

common while a few are much rarer or cryptic. In such case, models identify with reliability 444 

parameters influencing distribution of abundant species, but results are less trustworthy for 445 

species with scarce distribution or that often go undetected (Gotelli and Colwell, 2001; Engler 446 

et al., 2004). And this constitutes a great conservation issue knowing that rare species are 447 

generally classified as endangered. In order to avoid such a problem, we ran a model selection 448 

based analysis accounting for potential false-absence for the three Red List species of our 449 

survey, namely B. bufo, L. helveticus and S. salamandra. With the exception of B. bufo for 450 

which we obtained no valuable result, this analysis indeed reveals that environmental 451 

variables influencing distribution of L. helveticus and S. salamandra partially differ from the 452 

ones identified by the classical macroecological method as affecting the whole amphibian 453 

community. 454 

 Thus, results of this model selection based analysis indicate that distribution of S. 455 

salamandra is firstly related to within-pond variables (i.e. pond size, emergent aquatic 456 

vegetation cover and presence of a running water supply), whereas L. helveticus occurrence is 457 

mainly affected by landscape scale parameters (i.e. pond connectivity and streams density). 458 

This seems consistent with what was observed on the field, that is to say that presence of S. 459 

salamandra was strongly associated with ponds fitted with a water supply, and that L. 460 

helveticus presents a patchy distribution over the study area. Concerning B. bufo, our inability 461 

to obtain conclusive outcomes obviously results from the high observed site-occupancy rate 462 

of this species in the study area (i.e. 83%, see Figure 2) which is incompatible with such site-463 

occupancy-modelling. Nevertheless, we can expect that management recommendations 464 

provided on the basis of analysis ran for S. salamandra and L. helveticus will also benefit to 465 

B. bufo as this species is already widely distributed in the study area. 466 

 Consequently, our results indicate that, when aiming at identifying main drivers of 467 

amphibian distribution, considering risk of false-absence for rare and cryptic species provides 468 

complementary results to those obtained with classical species distribution models. This 469 

support the findings of numerous previous studies (Moilanen, 2002; Gu and Swihart, 2004; 470 

Mazerolle et al., 2005) concluding that not accounting for detectability in species distribution 471 

models can result in over- or under-estimating the influence of the investigated variables, 472 

which can at worst lead to erroneous conclusions. Hence, this information is of great concern 473 

in the current context of biodiversity loss (Wake and Vredenburg, 2008) and we thus strongly 474 
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encourage the use of site-occupancy models in order to powerfully target conservation 475 

measures for cryptic and endangered species. 476 

 477 

Management implications 478 

 Although this study was carried out in a restricted area and only during one breeding 479 

season, the results raise several issues of general importance for the management and 480 

conservation of forest amphibians. Studies investigating amphibian distribution in forest 481 

dominated landscape generally focus on forest management variables and often ignore the 482 

contribution of within-pond parameters (Demaynadier and Hunter, 1995). Here we provide 483 

evidence that different environmental variables acting at all pond, landscape and forest 484 

management levels affect amphibian distribution. This emphasizes the importance of 485 

considering all those different aspects in forest management programs in order to first 486 

efficiently identify and protect the most suitable areas for amphibians, and second to create 487 

adequate breeding ponds surrounded by favourable terrestrial habitats. In this respect and 488 

according to our results, we strongly recommend to forest managers and stakeholders to 489 

protect and restore primarily breeding ponds characterized by sufficient surface areas and by 490 

the presence of running water supplies, as we demonstrated the beneficial effects of these 491 

parameters for amphibian species in providing ponds with varied microhabitats and 492 

microclimates. Finally at a larger scale, our findings highlight the crucial importance of 493 

considering pond connectivity, both through stream corridors and above all forest cover, as 494 

well as providing uneven-aged stands in order to guarantee habitat structure diversity and 495 

mosaic landscapes, which are highly favorable to amphibian communities. 496 
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\Figure captions 723 

 724 

Figure 1: Study area located on the Central Plateau in the Western Switzerland. Polygons with 725 

black outline delimit forested areas and black dots represent the amphibian breeding ponds 726 

surveyed. Red to green gradient displays the projection of the expected total abundance in 727 

amphibians on the whole study area (the greener, the higher expected abundance in 728 

amphibians). 729 

 730 

Figure 2: Barplot with standard error of the detection probability P, the naïve site-occupancy 731 

estimate Q, the site-occupancy estimate accounting for imperfect detection probability Psi and 732 

the probability of non-detection after three visits per site F for the five most common species 733 

observed during the survey. 734 

 735 

Table 1: Summary of the environmental variables collected in the study area and related with 736 

forest amphibian distribution. Buffer values define the radius of measurement of the variables 737 

centred on the ponds. GIS stands for Geographic Information Systems. 738 

 739 

Table 2: Environmental variables content of the 11 different models built for the model 740 

selection analysis. 741 

 742 

Table 3: Summary of the GLM analysis investigating relationships between environmental 743 

variables and both amphibian species richness and total abundance. Significance codes are 744 

defined as usual (0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘•’ 0.1 ‘ ’ 1). 745 

 746 

Table 4: Summary from fitting 11 different site-occupancy models to the detection histories 747 

data of (A) Lissotriton helveticus and (B) Salamandra salamandra. ∆AIC for a model is the 748 

relative difference between its Akaike information criterion score (AIC) and the AIC score of 749 

the most parsimonious model (lowest AIC); w is the AIC model weight; p-value is a measure 750 

of model fit resulting from a Pearson chi-square statistic based upon 3000 parametric 751 

bootstraps. 752 

 753 
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Figure 1 756 
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Figure 2 759 
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Table 1 763 

 764 

Variable Abbreviation Description Mean (range) Buffer Data source 

Pond scale variables 

     Pond size (ln) Size Natural logarithm of the pond surface area [m2] 4.86 (1.1 - 8.48) Pond Field 
     Aquatic vegetation Aqua-Veg Percentage of the pond covered in emergent aquatic vegetation 34.48 (0 - 97.5) Pond Field 
     Water supply Water Presence/absence of a running water supply 0.3 (0=absence - 1=presence) Pond Field 
     Canopy closure Canopy Canopy density above the pond expressed as a percentage 54.78 (7.44 - 91.68) Pond Field 
Forest management scale variables 

     Coarse woody debris (ln) CWD Natural logarithm of the amount of dead wood at ground level [m3] 2.44 (1.49 - 4.02) 100 m Field 
     Understory vegetation Veg Percentage of the herbaceous vegetation cover 76.24 (30 - 98) 100 m Field 

     Stand age Age Presence/absence of recent (20th century) forest stand close to the pond 0.28 (0=absence - 1=presence) 100 m GIS 
     Tree diameter Diam Mean diameter at breast height of the forest stand [cm] 36.4 (29.83 - 46.25) 500 m GIS 
     SD tree diameter Sd-Diam Standard deviation of the mean diameter at breast height [cm] 10.76 (5.28 - 13.83) 500 m GIS 
     Coniferous rate A Conifer-A Percentage of coniferous stems close to the pond 41.9 (0 - 88.18) 100 m GIS 
     Coniferous rate B Conifer-B Percentage of coniferous stems around the pond 48.93 (2.76 - 75.76) 500 m GIS 
     Forest exploitation Exploit Proportion of forested landscape without logging during the last decade 0.03 (0 - 0.13) 500 m GIS 
Landscape scale variables 
     Elevation Elev Elevation of the pond [m.a.s.l.] 798 (582 - 910) Pond GIS 
     Connectivity Connect Distance-weighted connectivity index 5.63 (1.93 - 8.64) Pond GIS 
     Forest cover Forest Proportion of landscape covered by forest 0.75 (0.4 - 1) 500 m GIS 
     Hydrology Hydro Proportion of streams density 0.07 (0 - 0.15) 500 m GIS 
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Table 2 765 

 766 

Model name Site covariables implemented 
Number of site 

covariables implemented 

Null model   

     psi(.) p(.) - 0 

Full model   

     psi(full) p(.) 
Size, Aqua-Veg, Water, Canopy, Elev, Connect, CWD, Veg, Age, 
Diam, Sd-Diam, Conifer-A,Conifer-B, Exploit, Forest, Hydro 

16 

Pond scale models   
     psi(larvae survival) p(.) Size, Aqua-Veg, Water, Canopy, Conifer-A 5 

     psi(pond management) p(.) Size, Aqua-Veg, Water, Connect, Hydro 5 

Forest management scale models   
     psi(adult survivial) p(.) Conifer-B, Exploit, CWD, Veg, Age, Diam, Sd-Diam, Forest, Elev 9 

     psi(forest management) p(.) Canopy, Conifer-A, Conifer-B, Exploit, CWD, Veg, Diam, Sd-Diam 8 

Landscape scale models   
     psi(metapopulation survival) p(.) Connect, Hydro 2 

     psi(landscape) p(.) Forest, Elev, Age 3 

Hybrid models   
     psi(larvae survival & pond management) p(.) Size, Aqua-Veg, Water 3 
     psi(larvae survival & forest management) p(.) Canopy, Conifer-A 2 
     psi(adult survival & forest management) p(.) Conifer-B, Exploit, CWD, Veg, Diam, Sd-Diam 6 

 767 

 768 
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Table 3 769 

 770 

Estimate ± Standard error 

Variable Total abundance in 
amphibians 
(R2 = 0.73) 

Amphibian 
 species richness 

(R2 = 0.49) 

Pond surface area (Size) 0.338 ± 0.071 *** 0.193 ± 0.070 ** 
Emergent aquatic vegetation cover (Aqua-Veg) -0.005 ± 0.003 • -0.005 ± 0.004 
Presence of a running water supply (Water) - 0.688 ± 0.218 ** 
Canopy closure above the pond (Canopy) - -0.009 ± 0.006 
Pond elevation (Elev) 0.005 ± 0.003 -0.003 ± 0.001 * 
Pond connectivity (Connect) 0.181 ± 0.055 ** - 
Volume of large dead wood at ground level (CWD) 0.182 ± 0.165 - 
Presence of recent forest stand close to the pond (Age) - 0.606 ± 0.223 ** 
Heterogeneity of forest stand (SD-Diam) 0.166 ± 0.057 ** 0.102 ± 0.059 • 
Coniferous rate around the pond (Conifer-B) -0.021 ± 0.011 • - 
Forest exploitation intensity (Exploit) -6.796 ± 4.738 - 
Forest cover (Cover) 2.146 ± 0.688 ** - 
Streams density (Hydro) -5.041 ± 2.986 - 

 771 



 

UNIL – FBM – DEE – Master thesis 2011 V. Sonnay  Amphibian distribution in forested landscape 

32 

Table 4 772 

 773 

A 774 

Model ∆AIC w p-value 

psi(pond management) p(.) 0 0.42 0.48 
psi(metapopulation survival) p(.) 0.85 0.28 0.50 
psi(full) p(.) 1.88 0.17 0.14 
psi(forest management) p(.) 2.43 0.13 0.07 
psi(adult survival & forest management) p(.) 9.39 0.00 0.00 
psi(juvenile survival & forest management) p(.) 11.26 0.00 0.01 
psi(.) p(.) 12.29 0.00 0.01 
psi(adult survival) p(.) 15.34 0.00 0.00 
psi(juvile survival) p(.) 15.37 0.00 0.00 
psi(juvenile survival & pond management) p(.) 16.2 0.00 0.01 
psi(landscape) p(.) 16.29 0.00 0.01 

 775 

B 776 

Model ∆AIC w p-value 

psi(juvenile survival) p(.) 0 0.41 0.69 
psi(pond management) p(.) 0.15 0.38 0.59 
psi(full) p(.) 1.28 0.21 0.21 
psi(juvenile survival & pond management) p(.) 10.86 0.00 0.01 
psi(metapopulation survival) p(.) 20.23 0.00 0.00 
psi(.) p(.) 21.27 0.00 0.01 
psi(landscape) p(.) 21.39 0.00 0.00 
psi(adult survival & forest management) p(.) 22.44 0.00 0.01 
psi(juvenile survival & forest management) p(.) 22.97 0.00 0.00 
psi(adult survival) p(.) 24.91 0.00 0.00 
psi(forest management) p(.) 25.23 0.00 0.01 

 777 


